
Internet Collaboration using the W3C Document Object Model

By Xiaohong Qiu, Bryan Carpenter and Geoffrey C. Fox

Key words
Collaborative, MVC, DOM, SVG, event and Web services

Abstract

The Internet makes it possible to share information (e.g. text, image, audio, video and other formats of data)
across the globe. In this paper we look at collaborative Internet environments for applications whose user
interface is described by the W3C DOM – this can be expected to be a standard for browsers and other
office tools and so of general importance. We demonstrate a powerful general approach, which first uses
the MVC (Model View Controller) paradigm to restructure applications as Web Services and then applies a
general approach to making Web services collaborative. We demonstrate the essential ideas with the Java
open-source SVG (Scalable Vector Graphics) browser and describe the key general features of this way of
building interactive Web-based applications.

1. Introduction

Grids, peer-to-peer networking or more generally Internet systems (or Internet computing) are developing
both new technologies and new approaches to large scale applications. These efforts are developing
pervasive shared resources and capabilities managed to support dynamic or structured virtual organizations
[1,2]. There are several key projects such as TeraGrid [3], the UK e-science program [4] and technologies
such as Globus [5], Gnutella [6,7], JXTA [8] and JINI [9]. In the Community Grids laboratory at Indiana

University, we have proposed peer-
to-peer Grids [10,11] integrating
many of these ideas, and developed
some prototype technology
components as well as some full
systems. We have emphasized the
special requirements of real-time
collaboration [12,13], as needed in
distance education [14] and support
of distributed research collaboratories
[15]. In this paper we focus on one
part of this program – how should
applications be built in peer-to-peer
Grids so that they can be easily
integrated and take advantage of other
services. The answer to this is well
understood – namely applications are
just (software) objects and in today’s
Grids and P2P networks, distributed
objects are built as Web services [16].
We have explained in an earlier paper
[11] how one can in fact make
general Web Services collaborative
by sharing either the input or output

resource-facing and user-facing ports (figure 1). We have also introduced two useful technology
components to support this.

Figure 1 One way of setting up Collaborative Web services
involving replicating the application and using the system event
service (in our case NaradaBrokering) to share state-defining
messages. We show user-facing (UFIO) and Resource facing
(RFIO) Web service ports

WS
Display

WS
Viewer

WS
Display

WS
ViewerEvent

(Message)
Service

Master

WS
Display

WS
Viewer

Web
Service

F

I

U

O

F

I

R

O

Shared Input Port (Replicated WS) Collaboration

Other
Participants

Web
Service

F

I

U

O

F

I

R

O

Web
Service

F

I

U

O

F

I

R

O

Collaboration as a WS
Set up Session with XGSP

Resource
Facing Port

 1

1) A Web Service that supports collaboration by providing the Web service equivalent of H323, SIP and
JXTA functions – these include establishing sessions, clients, profiles and a collection of shared
resources. There is a new XML protocol XGSP introduced to capture the messaging needed to
implement this, which we term “Collaboration as a Web Service”. [17,18]

2) An event and messaging infrastructure NaradaBrokering [18, 19] that can manage the unicast and
multicast delivery of messages between the different clients. NaradaBrokering copes with multiple
protocols (both TCP/IP and UDP based) and tunnels through firewalls and network bottlenecks
determined by a performance module.

Critical to the concept of collaborative web services illustrated in figure 1, is that Web services are built
around messaging – their state is determined by control messages from the user or other services and their
“meaning” (in particular their output display) is defined by messages sent from other Web services. This
idea has prompted the development of WSRP (Web Services for Remote Portals) to specify the form of
user-facing ports [20]. This standard is layered on top of the basic WSDL specification of Web Service
ports [21].

Although any application is “just an object”, it is not like a distributed object or Web Service with message-
based input and output. Rather one has integrated software that bundles user interface, the “core of
application” and system interactions (to files and other programs) in a single package. Microsoft Word,
used to prepare this paper, is such a classic or legacy application. In fact there are the equivalents of the
Web services messages “hidden” inside the application where the message might appear as a method call
with the message placed on the program stack. Recognizing this, a variant of WSRP, WSIA (Web Services
for Interactive Applications) has been proposed for such cases [20].

Here we wish to investigate an approach that essentially builds all applications as Web services and
correspondingly

1) Defines all system interactions with messaging on resource facing ports
2) Separates the application into a “user interface” portion and a functional “core”
3) Converts all user interaction (such as mouse and keyboard actions) in the “user interface” to messages

sent for interpretation at the Web service

We suggest applying this design principle systematically will lead to many advantages including easier
support of universal access [22], easy deployment on server-controlled network computers, and the natural
support of collaboration. We are investigating this idea both in applications like Word but this is not trivial
because the object model defining such applications is not freely available. So here we choose to look at an
application – the Java SVG (Scalable Vector Graphics) application [23] – whose full source is available
from Apache [24]. This application also has the important feature that it faithfully supports the W3C
document object model DOM [25-27] that essentially defines all needed SVG state in terms of their event
model. Further we can expect browsers, word processors and presentation programs to eventually adopt
such an object model. Thus we believe our study will indicate how any W3C DOM based application can
be built in the Web service fashion. In other publications we have explored the universal access
implications of this idea by using it to support collaborative SVG between desktop and PDA devices [28].
The work illustrates that the user interface can have many different realizations – it could just be a viewer
of a bitmap image as in other PDA work or can be the display of a vector graphics standard. There we did
not explore the W3C DOM rich event model, which is the focus here.

In the following section, we briefly review the MVC (Model View Controller) approach, which is closely
related to the Web service design pattern. More details can be found in [29]. We then describe our design of
an “event-driven message passing” collaborative SVG viewer system, analysis of the different event types
and current results. These are built on the NaradaBrokering and XGSP infrastructure already developed and
tested in conventional web service case. Finally we present some conclusions.

2. MVC Paradigm

 2

The well-known Model-View-Controller (MVC) framework [30] is the central concept behind the
Smalltalk-80 user interface. MVC applications are split into several triads each of which comprises a
relationship between a Model object, a View object and a Controller. The view manages the graphical
and/or textual display. The controller interprets the mouse and keyboard GUI events, commanding the
model and/or the view to change accordingly. The model implements core functions of the application (the
state and behavior of application domain), responds to requests for information about its state (usually from
the view), and responds to instructions to change state (usually from the controller).

The MVC model has been the basis for most widely used graphical environments nowadays [31]. Currently
this approach is typically implemented as an event-driven MVC model, where the controller becomes an

event handler that dispatches mouse
events, keyboard events, and other
system events, to the corresponding
processing functions in the model.
Microsoft Windows [32] and Java
Swing UI components [33] are
examples of event-driven MVC
architecture.

User Facing Ports

Web Service Application (Model)
DOM Application as a Web service

Web Service Application (Model)
DOM Application as a Web service

Remaining W3C DOM semantic events

Control

Data
Web Service DOM

Resource Facing Ports

Web Service Application (View)

W3C DOM User Interface

Selected W3C DOM semantic events
W3C DOM UIEvents

Figure 2 DOM Application as a Web Service

Rendering as
Messages

Events as
Messages

Application as a Web service
Application as a Web service

Participating Client

RenderingRendering

User Interface

W3C DOM Events

From Master

From
Collaboration
As a WS

Events

Application as a Web service
Application as a Web service

Master Client

RenderingRendering

User Interface

W3C DOM Events

To Collaborative Clients

From
Collaboration
As a WS

Events

Control flow for collaborative SVG clients

Figure 3 Control flow for collaborative SVG clients

3. Structure of SVG Web Service

The essential decomposition of SVG
and related applications can be derived
from the MVC paradigm. We take the
Model component and this essentially
becomes the Web Service as shown in
fig. 2, while the View becomes the user
interface. They are linked by the
NaradaBrokering publish/subscribe
messaging system; the combination of
this with the preparation and
interpretation of messages corresponds
to the Controller MVC component. We
analyze all possible events and divide
them into DOM UIEvents (mouse and
keyboard events) and semantic events
(such as zooming). UIEvents are
generated in the View and are converted
into messages for the Model. One can
design different View modules (with
trade-offs in complexity and
performance) through choice of which
semantic events to process in the Model
and which in the View component.

We support collaboration in two
extremes; firstly the shared input port
model where one replicates Web
services and delivers events generated
on a master View client to all instances
of the Model. These service their
associated View component. This has
maximal flexibility for customization of
each collaborative client while in the
shared output port of service

 3

collaboration, a single Model instance uses NaradaBrokering to multicast rendering information to all
collaborating View modules. We show the resultant message passing in fig. 3 separately for the master
client defining the application state and other clients participating in the session. We show the two types of
messages – those defining overall context (Collaboration as a WS) and those corresponding to this SVG
application. Both are routed appropriately by NaradaBrokering.

4. Structure of Collaborative W3C DOM/SVG Events

We define a collaborative event as an object that wraps original SVG events with additional context
information for collaboration and Web service model. The context information helps to guide the events
through the NaradaBrokering system to reach other clients (subscribers in the same session). The receivers
un-wrap the collaborative event and get an SVG event that defines detailed actions on the SVG DOM. The
Model part of Web service application analyses the SVG event based on its type and then delivers the
resultant rendering information to the associated View(s). Below we summarize key types of event and their
structure.
1) We classify DOM events into two categories – UIEvents and semantic events.
The former comes from user input ─ mainly mouse and keyboard events; the latter higher-level events are
usually generated from UIEvents and represent functionality of the application or service. They includes UI
Logic Events and Mutation Events of the W3C DOM. Examples of semantic events in a SVG viewer
application are “Open a SVG document”, “Open An New Window”, “Open A Hyper Link”, “Zoom in”,
“Zoom out” and “Rotation” in a SVG viewer.

2) Master events vs. non-master events
In our collaborative session, all participating clients subscribe to an event topic through NaradaBrokering
system. Among them, only one client holds the “master” token and generates master events that trigger
collaborative behavior in the communication group. We term events that come from other participating
clients are non-master events. The master token can be changed dynamically. Further as discussed below,
non-master clients can – as in all such collaborative architectures – choose whether or not to follow
precisely the master’s state.

3) Major events vs. minor events
To build a robust system, we have to take into consideration that the following scenarios will occur in the
real world: clients will join and leave a collaborative session asynchronously; a client system will crash and
reboot; the replay service (recording of the collaborative session so far) is requested, and so forth. For the
purpose of synchronization and replay functions, we design a mechanism that marks the synchronization
point with major events. Major events are selected semantic DOM events (such as load a SVG file and
open a new window), which fully specify the application state. Minor events are events like “mouse move”
specifying “small” system changes. Note NaradaBrokering can save all published events (simply by
subscribing a persistent store to the session) and so always replay can be supported.

Collaboration involves sharing state between collaborating applications and we define state in terms of a
stream of time-stamped change (minor) events applied to a given initial state, which is a major event. We
commit this sequence of changes “every now and then” to form new major events that fully specify the
application but keep both the major events and the minor events that led up to them. A change (minor)
event based application specification is most powerful as one can dynamically choose which events to
accept and which events to discard; further each collaborative client can inject their own events. A state
(major) event is the most efficient way of specifying the instantaneous state of an application. By keeping
both major and minor events we can trade off performance and flexibility. Note both the full state and
change specifications are thought of as “just events”.

4) Collaboration as a Web Service (XGSP) Events
All information in our approach is carried by events transported by NaradaBrokering. The nature of the
collaboration (e.g. who is in the session and what applications are shared?) is specified by XGSP [11] and
generated by the Collaboration Web Service. This service initiates collaborative applications such as SVG
discussed here and for example generates the “master token”. Thus the Controller event handler must
process both events specialized to the application and such overall control events.

 4

5) Structure of Events
An event contains information such as follows:

• An original UIEvent or selected semantic events as generated by the DOM
• Event types (e.g. master/non-master, major/minor type)
• Context information of the collaboration (e.g. client ID, session/topic, windows name in a multi-

SVG viewer application, event sequence number)
• Context information of the Web services specifying application and collaboration session.

5. Conclusion
As discussed in earlier sections, we have designed and prototyped an approach to building DOM
applications as a Web service and then making them collaborative. We have reached the following
conclusions from the work reported in this paper ─
1) To share “legacy applications” like Microsoft Word and make them as shared Web services, we have

demonstrated a general approach involving conversion of the applications to an event-driven “message
passing MVC” model (figure 2). One separates the user interface interactions from core computation
or processing functions using message passing ─ systems with object-oriented design as illustrated by
the Java Batik SVG are particularly suitable for this strategy. Traditionally shared event collaborative
applications were generated by identifying state specifying actions as messages. We follow this idea
but by going through the Web Service route, create a cleaner more powerful architecture, which has
great value even when collaboration is not needed.

2) A collaborative event object should be well defined and contains sufficient information for
collaboration (including context information of collaboration, Web service and original SVG events
information). It reflects the essence of control in an event-driven message-passing model.

3) With the successful experience of building collaborative SVG DOM, we build up confidence for
continuing the approach of building other applications as Web services and using a similar
collaboration strategy. OpenOffice and Microsoft Office are natural applications to consider next.

4) In the final paper we will give more detail of the core events and study the performance of the Web
Service when compared to the conventional packaging.

References

1) Grid Computing: Making the Global Infrastructure a Reality edited by Fran Berman, Geoffrey
Fox and Tony Hey, John Wiley & Sons, Chichester, England, ISBN 0-470-85319-0, February
2003

2) The Grid Forum http://www.gridforum.org.
3) TeraGrid Project http://www.teragrid.org/.
4) United Kingdom e-Science Activity http://www.escience-grid.org.uk/.
5) Globus Grid Project http://www.globus.org.
6) Peer-To-Peer: Harnessing the Benefits of a Disruptive Technology, edited by Andy Oram,

O’Reilly Press March 2001.
7) Gnutella P2P System. http://gnutella.wego.com
8) Sun Microsystems JXTA Peer to Peer technology. http://www.jxta.org.
9) Sun Microsystems Jini Java service technology http://www.sun.com/jini.
10) Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh, Xi Rao,

Shrideep Pallickara, Quinlin Pei, Marlon Pierce, Ahmet Uyar, Wenjun Wu, Choonhan Youn,
Dennis Gannon, and Aleksander Slominski, “An Architecture for e-Science and its Implications”
in Proceedings of the 2002 International Symposium on Performance Evaluation of Computer and
Telecommunications Systems, edited by Mohammed S.Obaidat, Franco Davoli, Ibrahim Onyuksel
and Raffaele Bolla, Society for Modeling and Simulation International, pp 14-24 (2002).
http://grids.ucs.indiana.edu/ptliupages/publications/spectsescience.pdf.

11) Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh, Shrideep
Pallickara, Xiaohong Qiu, Ahmet Uyar, Minjun Wang, Wenjun Wu Collaborative Web Services
and Peer-to-Peer Grids presented at 2003 Collaborative Technologies Symposium Orlando
January 20 2003 http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03keynote.pdf,

 5

http://www.gridforum.org/
http://www.teragrid.org/
http://www.escience-grid.org.uk/
http://www.globus.org/
http://gnutella.wego.com/
http://www.jxta.org/
http://www.sun.com/jini
http://grids.ucs.indiana.edu/ptliupages/publications/spectsescience.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03keynote.pdf

 6

12) WebEx Collaboration Environment. http://www.webex.com.
13) Placeware Collaboration Environment. http://www.placeware.com.
14) Collection of Resources on distance education by Community Grids Laboratory

http://grids.ucs.indiana.edu/ptliupages/publications/disted/.
15) Geoffrey Fox, Sung-Hoon Ko, Marlon Pierce, Ozgur Balsoy, Jake Kim, Sangmi Lee, Kangseok

Kim, Sangyoon Oh, Xi Rao, Mustafa Varank, Hasan Bulut, Gurhan Gunduz, Xiaohong Qiu,
Shrideep Pallickara, Ahmet Uyar, Choonhan Youn, Grid Services for Earthquake Science,
Concurrency and Computation: Practice and Experience in ACES Special Issue, 14, 371-393,
2002. http://aspen.ucs.indiana.edu/gemmauisummer2001/resources/gemandit7.doc.

16) W3C Web Services at http://www.w3.org/2002/ws/.
17) Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut "A Web Services Framework for

Collaboration and Audio/Videoconferencing"; proceedings of 2002 International Conference on
Internet Computing IC'02: Las Vegas, USA, June 24-27, 2002.
http://grids.ucs.indiana.edu/ptliupages/publications/intl-sub03.pdf.

18) Hasan Bulut, Geoffrey Fox, Shrideep Pallickara,Ahmet Uyar and Wenjun Wu, Integration of
NaradaBrokering and Audio/Video Conferencing as a Web Service IASTED International
Conference on Communications, Internet, and Information Technology, November 18 to
November 20, 2002, in St.Thomas, US Virgin Islands.
http://grids.ucs.indiana.edu/ptliupages/publications/AVOverNaradaBrokering.pdf.

19) Geoffrey Fox, Shrideep Pallickara, and Xi Rao, “A Scaleable Event Infrastructure for Peer to Peer
Grids”, proceedings of 2002 Java Grande/ISCOPE Conference, Seattle, November 2002, ACM
Press, ISBN 1-58113-599-8, pages 66-75.
http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEventArchForP2P.doc.

20) OASIS Web Services for Remote Portals (WSRP) and Web Services for Interactive Applications
(WSIA) http://www.oasis-open.org/committees/.

21) W3C WSDL version 1.2 at http://www.w3.org/TR/2003/WD-wsdl12-20030124/.
22) Sangmi Lee, Geoffrey Fox, Sunghoon Ko, Minjun Wang, Xiaohong Qiu, Ubiquitous Access for

Collaborative Information System using SVG, Proceedings of SVGopen conference July 2002,
Zurich, Switzerland. http://grids.ucs.indiana.edu/ptliupages/projects/carousel/papers/draft.pdf.

23) W3C Scalable Vector Graphics (SVG) version 1.0 Specification http://www.w3.org/TR/SVG/.
24) Batik project at: http://xml.apache.org/batik.
25) W3C Document Object Model (DOM) Level 2 Core Specification http://www.w3.org/TR/DOM-

Level-2-Core/.
26) W3C Document Object Model (DOM) Level 1 Specification at http://www.w3.org/TR/REC-

DOM-Level-1/.
27) W3C Document Object Model (DOM) Level 2 Events Specification at

http://www.w3.org/TR/DOM-Level-2-Events/.
28) Geoffrey Fox, Sung-Hoon Ko, Kangseok Kim, Sangyoon Oh, Sangmi Lee on Integration of Hand-

Held Devices into Collaborative Environments at
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/papers/PDA_IC2002.pdf. Proceedings
of the 2002 International Conference on Internet Computing (IC-02) Volume 2 pp. 231-238.

29) Xiaohong Qiu, Bryan Carpenter and Geoffrey Fox, Collaborative Web services and the W3C
Document Object Model,
http://grids.ucs.indiana.edu/ptliupages/publications/collaborative_domfeb28-03.pdf.

30) A Goldberg. “Smalltalk-80: The Interactive Programming Environment”. Addison Wesley, 1984.
31) G. Lee, “Object oriented GUI application development”. Prentice Hall, 1994. ISBN: 0-13-363086-

2.
32) The MVC framework and Microsoft Windows at

http://infolab.kub.nl/pub/theses/w3thesis/Prototype/mvc.html.
33) Explore the underpinnings of the JFC's Swing components at

http://www.javaworld.com/javaworld/jw-04-1998/jw-04-howto.html.

	1. Introduction
	3. Structure of SVG Web Service
	We support collaboration in two extremes; firstly the shared input port model where one replicates Web services and delivers events generated on a master View client to all instances of the Model. These service their associated View component. This has m
	4. Structure of Collaborative W3C DOM/SVG Events

